当前位置: 首页 » 行业资讯 » 行业资讯 » 正文

AI识别又添新技术 看脚也能辨别身份了

放大字体  缩小字体 发布日期:2020-03-09  来源:人工智能观察  作者:本站  浏览次数:3539
核心提示:在生活中,对于如何识别一个人的身份,我们听说*多的大概是指纹扫描,虹膜扫描,甚至还有眼动追踪技术,而关于基于脚印的生物识别技术相比起来,似乎有些“鲜为人知”。近日,在全球*大的预印本系统Arxiv.org上发表的一项*新研究便调查了人工智能如何只通过足迹来识别一个人。来自印度理工学院的研究人员在一篇题为《利用脚步声中产生的地震信号进行人员识别》(Person Identif

  在生活中,对于如何识别一个人的身份,我们听说*多的大概是指纹扫描,虹膜扫描,甚至还有眼动追踪技术,而关于基于脚印的生物识别技术相比起来,似乎有些“鲜为人知”。近日,在全球*大的预印本系统Arxiv.org上发表的一项*新研究便调查了人工智能如何只通过足迹来识别一个人。

  来自印度理工学院的研究人员在一篇题为《利用脚步声中产生的地震信号进行人员识别》(Person Identification using Seismic Signals generated from Footfalls)的论文中描述了一个基于雾计算构架的系统。据悉,该架构采用边缘设备来执行大部分计算,存储和涉及数据收集的沟通。 对此,研究人员指出,这有助于减少宽带和能源需求,进而降低成本。

  在论文中,他们写道,“在我们的方法中,人们只需要穿过有传感器的活动区域即可。事实上,人类识别系统在各个领域都有重要应用。”

  具体而言,该系统由三层组成:物体层(传感器与低端处理器的配对,嵌入式处理器与收发器的配对);雾层(嵌入式处理器和收发器);云层(服务器)。在物体层,该过程由一个树莓派零(Raspberry Pi Zero)、远程收发器模块和一个地震检波器实现,后者是一个可以将地面运动转换为电压的地面运动传感器。雾层,主要是一个Raspberry Pi 3模型B,用于接收信号,然后进行解压缩,从中提取重要特征,同时在将信号通过以太网或Wi-Fi传输到云端之前对其进行分类处理。*后,云层执行推理。

  为了训练能够区分脚步的机器学习模型,研究人员除了收集脚步的长度和节奏(两个连续脚步之间的差距)外,还收集了脚步声的时间和频率。该团队称,在一个月的时间里,他们使用地震检波器从8名赤脚测试参与者那里收集了大约46,000个足迹——这是同类中*大的数据集。

  他们认为,在现实世界中,如果将“监控区域”(如学校或工厂)划分为“区域”(如工厂楼层,部门)和子区域(如房间,医院病房),就可以*好地完成数据收集。

  另外,在模型训练的过程中,研究小组发现,大约8分钟的步行,即约875个脚印中判断的准确率需要达到85%,而该系统的结果*终超过了这个数据。在测试的过程中,表现*好的人工智能系统与个人的脚步匹配时,仅从7个连续的脚步声中,判断身份的准确率可达92.29%。

  不过,该系统有一个明显的缺点是无法一次识别多个人,如果是两个人及以上便会混淆系统。研究人员将此问题作为了未来的研究对象,但他们相信当前的技术可以被用于登记教室或车间出勤,检测入侵者以及控制家用电器。

  研究人员表示,“这种生物识别系统的主要优点是,地震传感器可以很容易地被“伪装”起来;逃避检测是不可能的,因为脚步模式是无法模仿的;此外,它不会侵犯个人隐私;并且它对环境参数不太敏感,超出个人解码和制造原始信号的能力。”

 
 
[ 行业资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
推荐图文
推荐行业资讯
点击排行
供应信息更新列表- 安防商城更新列表- 企业库更新列表- 行业资讯更新列表- 企业新更新列表
 
网站首页 | 关于我们 | 联系方式 | 广告服务 | 会员积分 | 服务条款 | 版权声明 | 网站地图 | 网站留言 | RSS订阅
 
在线客服系统